
DOI 10.1140/epja/i2004-10105-x

Eur. Phys. J. A 23, 523–533 (2005) THE EUROPEAN
PHYSICAL JOURNAL A
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Abstract. We explore the features of Flatté-like parametrizations. In particular, we demonstrate that the
large variation in the absolute values of the coupling constants to the πη (or ππ) and KK̄ channels for
the a0(980) and f0(980) mesons that one can find in the literature can be explained by a specific scaling
behaviour of the Flatté amplitude for energies near the KK̄ threshold. We argue that the ratio of the
coupling constants can be much better determined from a fit to experimental data.

PACS. 13.60.Le Meson production – 13.75.-n Hadron-induced low- and intermediate-energy reactions and
scattering (energy ≤ 10 GeV) – 14.40.Cs Other mesons with S = C = 0, mass < 2.5 GeV

1 Introduction

In spite of a long history of investigations since their dis-
covery the nature of the light scalar mesons f0(980) and
a0(980) is far from being understood [1–6]. Usually to
get information about the properties of these resonances
the so-called Flatté parametrization [7] for the differen-
tial mass distributions is used. This parametrization was
first introduced by Flatté for the description of the πη
invariant-mass distribution near the KK̄ threshold where
the a0(980) scalar-isovector resonance is located.

The Flatté differential mass distribution is a slightly
modified relativistic version of the Breit-Wigner distribu-
tion. It reads, e.g., for the a0 channel
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with the partial widths Γπη = ḡηqη and
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below threshold, respectively. The subscript i in eq. (1) la-
bels the πη and/or KK̄ channels. Furthermore, mR is the
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nominal mass of the resonance, m is the invariant mass
(m2 = s) and qη is the corresponding center-of-mass mo-
mentum in the πη system. ḡη and ḡK are dimensionless
coupling constants that are related to the dimensional
coupling constants gπη and gKK̄ commonly used in the
literature by ḡη = g2πη/(8πm

2
R) and ḡK = g2

KK̄
/(8πm2

R),
respectively.

Since the position of the a0 peak is located far from
the πη threshold and the peak is relatively narrow, we may
consider the inelastic width Γπη to be approximately con-
stant for energies near theKK̄ threshold. The width ΓKK̄ ,
on the other hand, varies rapidly near this threshold. The
shape of the Flatté distribution (1) is determined by three
free parameters mR, Γπη (or ḡη) and ḡK , which should be
fixed from a fit of eq. (1) to the experimental differential
mass distribution. As was stressed already in ref. [7], if the
value of ḡK is reasonably large, then the ΓKK̄ term in the
denominator of eq. (1) will suppress the cross-section for
masses below the KK̄ threshold, thus narrowing the πη
mass distribution. It was also mentioned in ref. [7] that
“the differences between the shapes with Γπη = 80 MeV
and Γπη = 300 MeV are relatively slight”.

More than two decades have passed since the paper by
Flatté and a wealth of different experimental data con-
cerning the f0(980) and a0(980) resonances has been ob-
tained in the meantime. Nevertheless the uncertainties
in the parameters extracted for both resonances remain
large! To demonstrate this we compile in tables 1 and 2
some results of analyses for the a0 [8–13] and f0 [14–20]
mesons where Flatté or Flatté-like parametrizations like
the one by Achasov (see, e.g., refs. [13,21] and references
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Table 1. Flatté parameters for the a0(980)-meson taken from
the literature. The values of mR, Γπη and EBW are given in
MeV. Values for the references labeled with the superscript
(a) are based on Achasov’s parametrization [13], cf. also the
appendix.

Ref. mR Γπη ḡη ḡK R ER α

[8] 1001 70 0.218 0.224 1.03 9.6 0.276
[9] 999 143 0.445 0.516 1.16 7.6 0.106
[10] 999 69 0.215 0.222 1.03 7.6 0.221

[11](a) 995 125 0.389 1.414 3.63 3.7 0.027

[12](a) 984.8 121 0.376 0.412 1.1 −6.5 −0.28

[13](a) 1003 153 0.476 0.834 1.75 11.6 0.096

[13](a) 992 145.3 0.453 0.56 1.24 0.6 0.006

Table 2. Flatté parameters for the f0(980)-meson taken from
the literature. The values of mR, Γπη and EBW are given in
MeV. Values for the references labeled with the superscript
(a) are based on Achasov’s parametrization [13], cf. also the
appendix.

Ref. mR Γππ ḡπ ḡK R ER α

[14](a) 969.8 196 0.417 2.51 6.02 −21.5 −1.35

[15](a) 975 149 0.317 1.51 4.76 −16.3 −1.00

[16](a) 973 256 0.538 2.84 5.28 −18.3 −1.07
[17] 977 42.3 0.09 0.02 0.22 −14.3 −0.66
[18] – 90 0.19 0.40 2.11 – –
[19] 957 42.3 0.09 0.97 10.78 −34.3 −1.60

therein) are utilized. Note that these different parame-
terizations are equivalent in the nonrelativistic limit, i.e.

near the KK̄ threshold, which means that they all lead
to the same analytical form and the parameters of a par-
ticular distribution can be re-expressed by those of the
other distribution. We show this explicitly for Achasov’s
distribution in the appendix.

Table 1 clearly demonstrates, for the a0-meson, that
the resulting absolute values of ḡη (Γπη) and ḡK dif-
fer significantly for different analyses. At the same time
it also reveals that the ratios of the coupling constants,
R = ḡK/ḡη = g2

KK̄
/g2πη, are more or less consistent with

each other for practically all the parameter sets extracted
from the experimental data. For the f0(980)-meson the
situation is very similar for most of the results shown in
table 2. We should mention that in the case of the results
of refs. [17,19] for the f0 and of ref. [11] for the a0, which
deviate so strongly from the general trend, the value of
ḡK is afflicted with large errors, cf. refs. [11,17,19].

In the present paper we investigate the features of
Flatté or Flatté-like parametrizations. In the course of this
we demonstrate that the relative stability for the ratio R
and the large variations in the absolute values of the cou-
pling constants and masses, evidenced by the different fits
as mentioned above, can be understood. It is simply a
consequence of a specific scaling behaviour of the Flatté
amplitude for energies near the KK̄ threshold. The corre-
sponding scale transformation is introduced in sect. 2 and
we discuss its implications for the elastic (i.e. ππ or ηπ)

scattering amplitude near the KK̄ threshold and for the
effective-range parameters of the KK̄ channel.

In sect. 3 we focus on the interplay between reso-
nance structure and threshold. In particular, we investi-
gate the movement of the poles as a function of the cou-
pling strength to the KK̄ channel and we examine the
corresponding results for the (ππ or ηπ) scattering ampli-
tude and phase shifts.

Section 4 deals with the concrete cases of the
a0(980) and f0(980) mesons. Employing various Flatté
parametrizations for those mesons from the literature we
exemplify that the resulting phase shifts are indeed very
similar for most parameter sets, despite the fact that the
resonance parameters themselves differ drastically. Thus,
the actual results for the a0(980) and f0(980) clearly re-
flect the typical scaling behaviour that we derived for such
Flatté-type parametrizations. The paper ends with some
concluding remarks.

2 The Flatté distribution and scaling

behaviour

Let us concentrate here on energies near the KK̄ thresh-
old. In this region the resonance part of the elastic-
scattering amplitude for the channel with the light parti-
cles (πη for the a0(980) case or ππ for the f0(980)-meson)
can be written in a nonrelativistic form by

fel = −
1

2q

ΓP

E − EBW + iΓP
2

+ iḡK
k
2

. (2)

This nonrelativistic expression can be derived starting out
both from the relativistic Flatté formula (see eq. (1)) and
from the Flatté-like distributions like the one introduced
by Achasov [13] which takes into account the so-called
finite-width corrections due to πη (or ππ) and KK̄ loops
(see the appendix for more details). Here we use the nota-
tion ΓP = qḡP for the inelastic width, where P stands for
the πη or ππ channels and q is the corresponding center-
of-mass momentum. The energies are defined with respect
to the KK̄ threshold, i.e.

E =
√
s− 2mK , mR = 2mK + ER , (3)

where mK = (mK+ +mK0
)/2 and mR is the nominal

mass of the resonance. The parameter EBW, which would
correspond to the peak position of the standard nonrel-
ativistic Breit-Wigner (BW) resonance, i.e. in the limit
ḡK → 0, is defined as

EBW = ER

for the Flatté distribution (EBW for the Achasov distri-
bution is defined by eq. (A.12) in the appendix). In addi-
tion the relative KK̄ momentum, k, that also appears in
eq. (2), is given by k =

√
mKE. Note that k is imaginary

for E < 0, i.e. for
√
s < 2mK .

We consider here the case of elastic scattering in the
resonance approximation corresponding to eq. (2), i.e.
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without any background contributions. Then, for E > 0
the elastic cross-section is given by

σel = 4π|fel|2 =
πḡ2P

(E −EBW)2 + (ΓP + ḡKk)2/4
. (4)

For E < 0 we get

σel =
πḡ2P

(E − EBW − κḡK/2)2 + Γ 2
P /4

, (5)

where κ =
√

mK |E| is the modulus of the imaginary KK̄
momentum k. In the vicinity of the KK̄ threshold we may
omit E in eqs. (4) and (5), which leads us to the following
approximate expressions for the cross-section valid near
the KK̄ threshold:

σel =
4π

q2
1

α2 + (1 +Rk/q)2
, E > 0 ,

σel =
4π

q2
1

(α+Rκ/q)2 + 1
, E < 0 , (6)

where α = 2EBW/ΓP and R = ḡK/ḡP .
We see that in the approximation (6) the cross-section

does not depend on all three Flatté parameters, EBW and
the coupling constants ḡP and ḡK , but only on the ratios
R and α. Neglecting terms which are of higher order than
k (κ) we get from eqs. (6)

σel =
4π

q2
1

1 + α2
X, (7)

where

X = 1− 2R

1 + α2
k

q
for E > 0,

and

X = 1− 2Rα

1 + α2
κ

q
for E < 0.

Obviously the right and the left slopes (with respect to
k (κ)) of the elastic cross-section at the KK̄ threshold
are given only in terms of the ratios R and α. Note that
the sign of the slope dσ/dκ for E < 0 depends on the
sign of EBW (α), whereas the slope dσ/dk for E > 0 is
always negative. Thus, the near-threshold momentum de-
pendence of the invariant-mass spectrum allows to deter-
mine both parameters R and α unambiguously from data.

The fact that the result in eqs. (6) depends only on
the ratios R and α means that it is invariant with respect
to the scale transformation

EBW → λEBW, ΓP → λΓP , ḡK → λḡK . (8)

On the other hand, σel as calculated from the original
Flatté distribution (2) is not scale invariant, cf. eqs. (4)
and (5). Here the corresponding transformed elastic-
scattering amplitude has the form

fel = −
1

2q

ΓP

(E
λ
)− EBW + iΓP

2
+ iḡK

k
2

. (9)
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Fig. 1. ππ cross-section for different scaling parameters λ.
The results are based on the Flatté parameters R = 4.76,
ḡπ = 0.317, ḡK = 1.51, and |EBW| = 163.7 MeV of ref. [15].
a) EBW < 0 , b) EBW > 0.

Obviously, this expression reduces to the scale-invariant
form in the limit |E| → 0.

We should emphasize at this stage that the above con-
siderations hold only if the resonance is located close to
the KK̄ threshold, i.e. within an energy range where also
the above expansion is valid. That seems to be the case for
basically all the parametrizations as one can see from the
values of ER in tables 1 and 2. If the resonance is located
away from the threshold region then there will be no scale
invariance. But then, of course, one would not use a Flatté
distribution either.

In order to illustrate the effect of the scale transforma-
tion we give, in fig. 1, some examples of differential mass
distributions in the scaling limit (6) and for different val-
ues of the parameter λ. The starting parameters ΓP , ḡK
and EBW are those of ref. [15], given in table 2. Figure 1a
shows the results for negative EBW and fig. 1b those for
positive EBW. One can see that scaling is practically ful-
filled for the energy interval of roughly ± 25 MeV around
the KK̄ threshold. Indeed, the cross-sections above the
threshold are basically the same for all λ up to the highest
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Fig. 2. πη cross-section for different scaling parameters λ. The
results are based on the Flatté parameters R = 1.14, ḡπ =
0.454, ḡK = 0.506, and EBW = 7.6 MeV of ref. [9].

considered excess energy of 100 MeV. For energies below
the threshold and EBW < 0 scaling breaks down soon
and there are already significant differences in the cross-
sections for energies around E ≈ −50 MeV, whereas for
the case of EBW > 0 those differences remain small down
to even E = −100 MeV.

Of course, the range of scaling depends to some extent
on the parameters R and α. In order to demonstrate this
we show, in fig. 2, results obtained with the parameters of
ref. [9]. Here the ratio R is more than three times smaller
than for the case considered above. It is clear from fig. 2
that the scaling behaviour is practically limited to the
region very near to the KK̄ threshold when the ratio R is
relatively small.

Since the shape of the mass distribution near the KK̄
threshold is scale invariant, as we just found, it is inter-
esting to discuss what happens with the position of the
singularities of the amplitude (2) as a function of the scal-
ing parameter λ. The position of the poles in the complex
k-plane can be given in terms of the KK̄ scattering length
a and effective range re:

k1,2 =
i

re
±
√

− 1

r2e
+

2

are
. (10)

Those effective-range parameters can then be related to
the Flatté parameters EBW, ΓP and ḡK :

a = − ḡK
2(EBW − iΓP /2)

, re = −
4

mḡK
. (11)

Note that in the Flatté parametrization of the scatter-
ing amplitude the effective range is always negative. This
is in contradiction to the usual interpretation of the ef-
fective range as interaction range [22], which should be
positive of course. We should mention, however, that in
the case of potential models the effective range can be
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Fig. 3. Trajectories of the poles in the complex k-plane, where
k is the c.m.s. momentum in the KK̄ system. The same Flatté
parameters as in fig. 1 are used. The scaling parameters λ is
varied. a) EBW < 0 , b) EBW > 0. The physical region of the
variable k is indicated by the thick solid lines.

positive as well as negative (see, e.g., ref. [23]). A positive
effective range can be also obtained if one takes into ac-
count the so-called finite-width corrections as is done in
the Flatté-like distribution of Achasov, cf. the appendix
and also the work of Kerbikov [24].

As is seen from eqs. (11) the scattering length a re-
mains unchanged by the scale transformation (8), whereas
the effective range re rescales according to re → re/λ.
From eq. (10) we conclude that in the limit of small λ

both roots are located near the points k = ±
√

2/are,
i.e. practically symmetric around the point k = 0. This
corresponds to the case where the pure BW resonance
dominates the cross-section. In the limit of large λ the ef-
fective range is getting small and the nearest pole to the
point k = 0 is located at k1 ≈ 1/a. The second pole is
at k2 = 2iλ/re and plays practically no role anymore for
the physics around the KK̄ threshold. In fig. 3 we show
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the trajectories of the poles of the scattering amplitudes
(9) as a function of the parameter λ (0.1 ≤ λ < ∞) for
the same sets of parameters (ḡP , ḡK , EBW) used for the
results in fig. 1.

The limiting, scale-invariant form of the cross-section
as given by eqs. (6) corresponds to the scattering ampli-
tude in the zero-range approximation, i.e. to

fel =
1

R

1

−a−1 − ik
. (12)

The scattering length a can be expressed in terms of the
ratios R and α and the relative momentum of the light
particles at the KK̄ threshold, qth:

a = − 1

qth

R

α− i
. (13)

Thus, since the ratios R and α can be extracted from
a study of the near-threshold momentum dependence of
the invariant-mass spectrum, a determination of the (com-
plex) KK̄ scattering length is also feasible.

3 Resonance-threshold interplay: poles,

cross-sections and phase shifts

In a previous paper [25] we discussed the concept of “pole
counting” suggested by Morgan [26] as a tool for near-
threshold resonance classification. It was demonstrated
that the existence of a pair of poles in the complex k-plane
in the vicinity of the threshold of the heavy particles cor-
responds to the situation where a resonance has a large
admixture of an elementary (bare) state made up of a
quark-antiquark pair, say. On the contrary, the situation
when there is only one pole near the threshold point k = 0
corresponds to the molecule-like picture of a resonance.

The role of the KK̄ threshold for the shape of the
differential mass spectra becomes more transparent if one
studies the pole positions in the k-plane as a function of
the strength of the coupling to the KK̄ channel, ḡK , while
keeping the other two parameters, EBW and ΓP , fixed.
Corresponding results are presented in fig. 4. In parallel
we also look at the behaviour of the elastic cross-section in
the channel of the light particles. Those results are shown
in fig. 5. As an example we take the Flatté parameters of
ref. [19], given in table 2, as starting point. The coupling
strength ḡK is varied by multiplying it with a factor γ and
we label the corresponding curves in the figures with the
values chosen for γ.

In the k-plane the position of the poles is given
by eq. (10). Note, that in the limit ḡK → 0 we get
a → 0 and re → −∞, see eq. (11). However, combin-
ing eqs. (10) and (11) we see that in the limit ḡK → 0

the poles of the amplitude (2) are at k1,2 = ±
√

2/are =

±
√

mK(EBW − iΓP /2). These are simply the poles of the
pure BW amplitude. They are located in the 2nd and 4th
quadrants of the k-plane and they are symmetric with re-
spect to the point k = 0, cf. fig. 4. Note that in the limit
ḡK → 0 the resonance is completely decoupled from the
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Fig. 4. Trajectories of the poles in the complex k-plane, where
k is the c.m.s. momentum in the KK̄ system. The results are
based on the Flatté parameters ḡπ = 0.09, ḡK = 0.97, and
|EBW| = 34.3 MeV of ref. [19]. The coupling strength to the
KK̄ channel is varied by γ × ḡK . a) EBW < 0 , b) EBW > 0.
The physical region of the variable k is indicated by the thick
solid lines.

KK̄ system. The proximity of the resonance state to the
KK̄ threshold is then just accidental.

The elastic cross-sections corresponding to the uncou-
pled case are shown as dashed lines in fig. 5. For EBW < 0
(fig. 5a) the resonance is located below the KK̄ threshold.
Note that in this case the pole from the 2nd quadrant is
closer to the physical region of the variable k (the physi-
cal region of the variable k is indicated by the thick solid
lines in figs. 4a, b) and causes the structure in the cross-
section. For EBW > 0 (fig. 5b) the resonance manifests
itself as a bump in the cross-section at energies above the
KK̄ threshold. In this case the pole in the 4th quadrant
is located closer to the physical region and is responsible
for the structure in the cross-section.
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Fig. 5. Results for the ππ cross-section. The same Flatté pa-
rameters as in fig. 4 are used. The coupling strength to the
KK̄ channel is varied by γ × ḡK . a) EBW < 0, b) EBW > 0.

When the coupling to the KK̄ channel is switched on
and ḡK increases, the position of both poles begins mov-
ing downwards in the (complex) k-plane for EBW > 0 and
also for EBW < 0, cf. fig. 4. For very large values of ḡK the
pole, located initially in the 2nd quadrant, moves to the
limiting point k = 0 and the second pole moves to −i∞.
In this case, according to eq. (11), the scattering length a
goes to infinity and the effective range re goes to zero. In
the regime of large coupling, ḡK À ḡπ, we have only one
pole near the point k = 0 and the approximate expression
for elastic-scattering amplitude is given again by eq. (12).
This situation corresponds to a molecule-like structure of
the near-threshold resonance [25]. Note that most of the
available Flatté parametrizations indicate that the sce-
nario of ḡK À ḡπ is roughly fulfilled for the f0(980) case,
cf. table 2. In this context let us emphasize that ḡK À ḡπ
corresponds to a large ratio R. The latter quantity can be
extracted fairly reliably from Flatté parametrizations of
the experimental invariant-mass distribution as we showed
in the previous section.

The corresponding evolution of the cross-section with
increasing of the coupling strength can be seen from fig. 5.
For EBW < 0 the initial pure BW resonance evolves into
a distinct structure that approaches the KK̄ threshold
when the channel coupling is switched on and gradually
increased. The maximum of the cross-section remains al-
ways below the threshold. Clearly, the pole, which is re-
sponsible for the structure in the cross-section for small
values of ḡK and which was located in the 2nd quadrant,
retains its influence on the resonance shape for all values
of ḡK , whereas the second pole (in the 4th quadrant) is not
significant. For the case EBW > 0 (fig. 5b) we see again the
developement of a distinct structure in the cross-section
which, however, is now a cusp located exactly at the KK̄
threshold. Also the general situation is different. As al-
ready said, for small values of ḡK the pole located in the
4th quadrant is closer to the physical region and is respon-
sible for the structure in the cross-section. With increasing
ḡK this pole moves away from the physical region. Simul-
taneously the pole from the 2nd quadrant moves closer to
the physical region and takes over the dominant role. Thus
we observe here that, with increasing ḡK , one leading pole
is substituted by another!

In this context it is interesting to look also at the be-
haviour of the corresponding phase shifts. The S-matrix
corresponding to the Flatté amplitude (2) is given by

S = η exp (2iδ(k)) =
E − EBW − iΓP /2 + iḡKk/2

E − EBW + iΓP /2 + iḡKk/2
.

(14)
Phase shifts δ(k) for fixed |EBW| and ΓP and several val-
ues of the coupling constant ḡK are presented in fig. 6.
The long dashed lines are the results for the uncoupled
situation, i.e. for ḡK = 0. In this case the phase shifts go
through 90◦ at the nominal BW resonance energy EBW.
When the coupling to the KK̄ channel is switched on
and increased there is a significant difference in the de-
velopement of the phases for EBW < 0 and EBW > 0.
For EBW < 0 (fig. 6a) the energy where the phase passes
through 90◦ moves closer and closer to the threshold and
at the same time the rise of the phase is getting steeper
and steeper. Thus, for a strong coupling to the KK̄ chan-
nel (i.e. a large ḡK) the behaviour of the phase shift is
completely dominated by the occurence of the threshold.
The parameter values of the initial BW resonance (EBW

and ΓP ) play practically no role anymore.
The results for EBW > 0 are shown in fig. 6b. As can

be seen, for small coupling (ḡK ≤ 0.3) the phase shifts in-
crease from 0◦ to 180◦ with increasing energy —whereby
a more and more pronounced kink develops at the KK̄
threshold. At a certain value of ḡK there is suddenly a
jump in the phase and from there onwards the phase al-
ways approaches zero for increasing energy! This specific
behaviour of the phase for EBW > 0 may be understood by
looking at the trajectories of the poles, shown in fig. 4b.
For ḡK = 0 we have a pair of poles located symmetric
with respect to the point k = 0 and the pole in the 4th
quadrant is nearest to the physical region of the variable
k. When ḡK increases both poles move down in the com-
plex plane. Then, at some stage, the pole located initially
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Fig. 6. ππ phase shift δ in the J = 0, I = 0 partial wave.
The same Flatté parameters as in fig. 4 are used. The coupling
strength to the KK̄ channel is varied by γ × ḡK . a) EBW < 0,
b) EBW > 0

in the 2nd quadrant crosses the real axis of the k-plane
and reaches the 3rd quadrant. (In the specific case shown
this occurs for ḡK ≈ 0.33.) In the absence of absorption
(i.e. for ΓP = 0) this transition corresponds to the muta-
tion of a real bound state (in the KK̄ system) to a vir-
tual state. This change is reflected also in the ππ system,
namely by the mentioned jump in the phase shift. In case
of EBW < 0, the second pole remains in the upper half-
plane for all values of ḡK , see fig. 4a. In this case a bound
state exists for all values of ḡK and the global features of
the phase do not change.

4 The f0 and a0 mesons

Let us first discuss the f0(980)-resonance. Here the rele-
vant S-wave ππ phase shift in the isospin I = 0 channel
is known experimentally over a wide energy range, see,
e.g., refs. [27–30] and also the more recent analyses in
refs. [31,32]. The situation for the f0(980)-resonance dif-
fers significantly from the ideal situation without back-
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Fig. 7. ππ phase shift δ in the J = 0, I = 0 partial wave.
The curves are results based on Flatté distributions taken from
refs. [14–17]. The symbols show results from various phase shift
analyses taken from refs. [27,28,30–32].

ground, which was discussed in sects. 2 and 3, because
the phase shift exhibits already a nontrivial behaviour be-
low the f0(980) region. It rises monotonously from the
ππ threshold onwards and reaches 90◦ already at an en-
ergy around 700 MeV. Usually this behaviour is explained
via the presence of a broad scalar resonance called σ or
f0(400–1200) [33] which is believed to be a pure rescatter-
ing effect, see, e.g., [34]. This broad resonance provides the
background for the f0(980)-meson. Because of this large
background the f0(980)-meson manifests itself as a narrow
dip located near the KK̄ threshold in some production re-
actions rather than as a bump [35].

Still, because the ππ S-wave phase shift is known ex-
perimentally, at least at a first glance the chances for a
determination of the resonance parameters appear to be
much more promising for the channel with isospin I = 0
than for the one with I = 1 (i.e. for the case of the
a0-meson). Specifically, one would hope that the knowl-
edge of the S-wave phase shift allows to fix the scale of
the coupling constants ḡπ and ḡK for the f0 case. Unfortu-
nately, in practice the situation is much more complicated.
The main problem is, of course, that experimentally only
the total phase shift can be extracted, and the phase of the
background cannot be disentangled unambiguously from
the contribution of the f0-resonance. Thus, by making dif-
ferent assumptions about the behaviour of the background
one will always get different solutions for parameters of
the f0-resonance. The second difficulty is that each of the
phase shift analyses is afflicted by fairly large error bars. In
addition, there are also drastic differences between the re-
sults of some of those phase shift analyses (compare, e.g.,
refs. [27–32]) for ππ scattering. These differences preclude
the possibility to extract a unique set of parameters for
the f0(980)-resonance.

To illustrate the two above remarks, we show in fig. 7
the experimental phases taken from refs. [27,28,30–32].



530 The European Physical Journal A

-50 0 50 100 150 200 250 300
E [MeV]

0

0,2

0,4

0,6

0,8

1

η ππ

Hyams
Gunter
CMD-2
SND
KLOE
E791

Fig. 8. Inelasticity in the ππ J = 0, I = 0 partial wave.
The curves are results based on Flatté parameters taken from
refs. [14–17]. The symbols show results from phase shift anal-
yses taken from refs. [27,30].

We also present the ππ phases reconstructed from the pa-
rameters for the f0-meson obtained from different analy-
ses [14–17]. The latter results exemplify that all parame-
ter sets, and in particular those from radiative φ-decays,
yield very similar phase shifts, despite the fact that the
parameters of the f0(980)-resonance differ drastically (see
table 2). Thus, they exhibit the typical scaling behaviour
that we discussed above. Note that for those curves we
have added a background phase which grows smoothly
from 70◦ to 90◦ in the energy region ±150 MeV around
threshold. We did this in order to enable a direct compar-
ison of the calculated results with the energy dependence
of the experimental phase shifts. In all shown cases the
same background phase is used.

The sensitivity of the inelasticity η (the definition of η
is given by eq. (14)) to the Flatté parameters is demon-
strated in fig. 8 for the case of the f0(980)-meson. Ex-
perimental data for the S-wave I = 0 ππ inelasticities are
taken from refs. [27,30]. Though there are some variations
in the results of different parametrizations it is obvious
that today’s experimental knowledge of the inelasticity in
ππ scattering near threshold is not sufficient for determin-
ing the parameters for the f0-resonance.

Results for the ππ elastic cross-section based on those
Flatté parametrizations are shown in fig. 9. We can see
again that most of those parametrizations yield rather
similar predictions.

Now let us discuss shortly the a0-meson. As is seen
from tables 1 and 2 the strength of the coupling to the
KK̄ channel, ḡK , is much weaker for the a0-meson than
for the f0-meson, whereas the coupling to the ππ or πη
channels is comparable. Accordingly, the ratio R is, in
general, significantly smaller for the a0 case. As a conse-
quence, for the a0-meson the magnitude of the effective
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Fig. 9. Results for the ππ cross-section. The curves are results
based on Flatté distributions taken from the refs. [14–17].
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Fig. 10. πη phase shift δ in the J = 0, I = 1 partial wave.
The curves are results based on Flatté distributions taken from
refs. [8,9,12,13].

range is much larger and both singularities of the scatter-
ing amplitude influence the differential cross-section near
the KK̄ threshold. These aspects were already discussed
in our previous paper [25].

The behaviour of the πη S-wave phase shift is pre-
sented in fig. 10 for the Flatté parametrizations given in
refs. [8,9,12,13]. Also here one sees that there is basi-
cally no difference in the prediction for the phase shifts
despite the fact that all sets of parameters are quite dif-
ferent. However, this is not the case anymore for the πη
inelasticity η which is shown in fig. 11 and also for the
πη total cross-section (cf. fig. 12). Here there are stronger
variations between the results produced by the different
parametrizations. Thus, the scaling behaviour is not so
pronounced for the case of the a0-meson, which could be
already guessed from the smaller ratioR (cf. the discussion
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Fig. 11. Inelasticity in the πη J = 0, I = 1 partial wave.
The curves are results based on Flatté parameters taken from
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Fig. 12. Total cross-section in the πη J = 0, I = 1 partial
wave. The curves are results based on Flatté parameters taken
from refs. [8,9,12,13].

in sect. 2). Consequently, for the a0-resonance there could
be a better chance to determine all three Flatté parame-
ters as compared to the f0-meson.

These examples show that the determination of the
“true” values for the parameters of the a0- as well as the
f0-meson is a rather challenging problem. It requires, first
of all, a very significant improvement in the accuracy of
the experimental data.

5 Conclusions

In the present paper we studied properties of the Flatté
amplitude (2), which is usually employed to describe
differential mass distributions resulting from S-wave
resonance-like structures, located near a threshold. Specif-
ically, such Flatté and Flatté-like distributions are often
used to describe and derive properties of the scalar mesons

a0(980) and f0(980). But there are also some other ex-
amples of hadronic resonances, located near thresholds,
where it is reasonable to represent them in terms of the
Flatté distribution.

The Flatté parametrization of the amplitude includes
three free parameters which should be determined from
the experimental mass spectrum. These are the nominal
mass of the resonance, mR, the inelastic width at thresh-
old, ΓP , (or the coupling constant for the channel of the
light particles, ḡP ), where P stands for ππ or πη, and the
coupling constant ḡK for the channel of the heavy parti-
cles.

We showed that the mass spectrum near threshold is
not sensitive to all the parameters (EBW, ḡP , ḡK) but
rather only to the two dimensionless ratios R = ḡK/ḡP
and α = 2EBW/ΓP . Those are the two parameters that
determine also the scattering length in the channel with
the heavy particles. This difficulty of fixing all three
Flatté parameters concerns the standard Flatté distribu-
tion but also relativistic extensions like the one proposed
by Achasov and is clearly reflected in the parameter values
for the a0(980) and f0(980) mesons that can be found in
the literature (cf. tables 1 and 2). The results of those fits
to the data exemplify that there is a large uncertainty in
the absolute values of the coupling constants, whereas the
ratios R and α can be extracted from experiments with
much better accuracy.

In principle, only the information about the absolute
values of the coupling constants and the nominal reso-
nance mass opens the possibility to calculate the KK̄
effective-range parameters and to reconstruct the position
of the poles of the scattering amplitude in the complex
k-plane. As was stressed in ref. [25] and in line with the
suggestion made by Morgan [26], the knowledge of the
position of the poles of the scattering amplitude allows
to draw conclusions on the nature of the resonance, i.e.

to clarify, whether it corresponds to an elementary object
made from quarks or whether it is a compound state like
a KK̄ molecule. However, the ratio R of the coupling con-
stants is an interesting quantity, too. For example, a large
R, i.e. a large coupling to theKK̄ channel, is a strong indi-
cation for a molecular-like structure of the near-threshold
resonance. Fortunately, as we have shown, this ratio can
be determined from a Flatté parametrization of the mass
distributions with significantly better reliability than the
absolute values of the coupling constants.
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sions and suggestions. This work was supported by the DFG-
RFBR grant No. 02-02-04001 (436 RUS 113/652). A.K. ac-
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Appendix A.

The elastic-scattering amplitude for the channel with the
light particles for the relativistic Flatté distribution has
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the form

fel = −
1

q

ΓPmR

m2 −m2
R + imR(ΓP + ḡk

k
2
)
. (A.1)

In the nonrelativistic limit it can be rewritten as

fel = −
1

2q

ΓP

E − EBW + iΓP
2

+ iḡK
k
2

, (A.2)

where we used the notation introduced in sect. 2.
Let us demonstrate in this appendix that the relativis-

tic Flatté-like distribution introduced by Achasov [13], i.e.
the expression

fel = −
1

q

ΓPmR

m2 −m2
R +

∑

ab[Π
ab(m2)− ReΠab(m2

R)]
,

(A.3)
where Π takes into account the so-called finite-width cor-
rections to the self-energy loop of the resonance with nom-
inal mass mR from the two-particle intermediate states ab
(ππ or πη and KK̄), reduces to the form given in eq. (A.2)
in the nonrelativistic limit. In the region m ≥ ma + mb

the expression for Πab is

Πab(m2) =
g2ab
16π

[

m+m−

πm2
ln
mb

ma

+

+ρab



i+
1

π
ln

√

m2 −m2
− −

√

m2 −m2
+

√

m2 −m2
− +

√

m2 −m2
+







 , (A.4)

where m± = ma ± mb with ma ≥ mb and

ρab(m) =

√

(

1− m2
+

m2

)(

1− m2
−

m2

)

. In the nonrela-

tivistic limit the expressions for ∆Πab/4mK =
[

ReΠab(m2)− ReΠab(m2
R)
]

/4mK take the form

∆ΠKK̄

4mK

≈ ḡK
π

(E − ER)

∆ΠP

4mK

=
ḡP
4π

(E − ER) CP (A.5)

where P denotes ππ or πη loops and

CP =

{

m+m−

2m2
k

ln
mb

ma

−A−A+

[

(B− +B+) ln
A− −A+

A− +A+

+
A−A+(B− −B+)

A2
− −A2

+

]}

, (A.6)

A± =

√

1− (ma ±mb)2

4m2
K

, B± =
(ma ±mb)

2

4m2
K − (ma ±mb)2

.

(A.7)

Note that the expression for Cππ can be easily simplified
to

Cππ = 2

(

1− m2
π

m2
K

ln
mπ

2mK

)

+O

(

m2
π

m2
K

)

≈ 2.32, (A.8)

whereas the evalution of Cπη gives the value 2.81.
Thus, using the nonrelativistic expansion of the loop

corrections (eqs. (A.5)) eq. (A.3) can be reduced to the
standard Flatté form. For example, for the f0-meson, one
gets

fππ = −
1

2q
×

ΓP

(E−ER)(1−
ḡK
π
− ḡπ

4π
Cππ)+

ḡK
2

√

m|ER|Θ(−ER)+i
ΓP
2
+iḡK

k
2

= −
1

2q

Γ̃P

E− EBW+i Γ̃P
2
+ig̃K

k
2

, (A.9)

where

g̃π =
ḡπ

1− ḡK
π
− ḡπ

4π
Cππ

, g̃K =
ḡK

1− ḡK
π
− ḡπ

4π
Cππ

,

Γ̃P = g̃πq, (A.10)

EBW =ER−
g̃K
2

√

m|ER|Θ(−ER), (A.11)

α =
2EBW

Γ̃P
. (A.12)

Note that the term
ḡK
2

√

m|ER|Θ(−ER) in the denom-

inator results from the piece ReΠ(m2
R) in the case of

a negative ER. We want to mention also that for some
values of the parameters ḡK and ḡπ the expression

1− ḡK
π
− ḡπ

4π
Cππ can change the sign. In this case the ef-

fective range in eq. (11) also changes its sign and becomes
positive. Then the relativistic distribution introduced by
Achasov (eq. (A.3)) no longer can be reduced to the stan-
dard nonrelativistc form (A.2) but it will go over into what
one might call an anti-Flatté distribution, i.e. into a form
that is identical to eq. (A.2) but where the sign of the real
part in the denominator is reversed.
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